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Abstract: The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method 
(ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 
molecules) being pyridazine derivatives. AChE activities of the series were measured in IC50 units, and relative to the ac-
tivity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and anti-
pharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteris-
tics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conforma-
tional and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, 
namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning 
was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing re-
vealed that the high ETM’s ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of 
HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital 
coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharma-
cophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction.  

Key Words: AChE, electronic-topological method, neural networks, pyridazine derivatives, structure-activity relationships.  

INTRODUCTION 

 Alzheimer’s disease (AD) associated with aging affects 
up to 5% of people over 65 years, rising to 20% of those 
over 80 years [1]. The disease is characterized by the pres-
ence of some neuropath logical markers detected in the brain 
of AD patients, which are the -amyloid ( A) plaques and 
the neurofibrillary tangles. A pathogenic role is ascribed to 
these lesions, and many research programs that are focused 
on drugs capable of modifying the course of the disease are 
targeting both their formation and neurotoxicity [2].  

 One of a few undisputed evidences in the neuropathology 
of the AD is loss of cholinergic neurons occurring in differ-
ent areas of the central nervous system (CNS), mainly the 
cerebral cortex and hippocampus, and it is not a surprise that 
the early pharmacological approaches to the treatment of the 
AD patients were aimed at increasing the availability of the 
cholinergic neuro-transmitter acetylcholine (ACh) [3]. On 
this basis, the cholinergic hypothesis became the leading 
strategy for the development of AD drugs [4, 5]. Tacrine was 
the first acetylcholinesterase (AChE) inhibitor launched in 
1993 as the first drug for the symptomatic treatment of AD 
[6].  

 Three-dimensional quantitative structure–activity rela-
tionship (3D QSAR) studies were performed on AChE in-
hibitors, based on the molecular docking scores obtained by  
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using FlexX and FlexiDock and comparative molecular field 
analysis (CoMFA) [7].  

 A diverse approach to the quantitative structure–activity 
relationship (QSAR) of tacrine derivatives against acetylcho-
linesterase (AChE) activity was applied in [8] using the vari-
ables selection for stepwise multiple linear regression (MLR), 
genetic algorithm (GA)-MLR, and simulated annealing (SA)-
MLR. AChE activity (log RA) of tacrine derivatives was 
expressed with acceptable explanation (95.5–95.9%) and 
good predictive power (94.5–95.2%), respectively, in the 
models. The best equation was obtained from simulated an-
nealing (SA) MLR with greater explanatory capability and 
better prediction, with a smaller standard error than other 
methods. The resulting models with the given descriptors 
illustrate the significant role of hydrophobic and electrostatic 
interactions for the AChE activity increase, while hydro-
philic and topological features of molecules were shown to 
cause the decrease of AChE activity. 

 Quantitative structure–activity relationships (QSAR) 
studies on 24 Amaryllidaceae alkaloids being AChE inhibi-
tors and belonging to five-membered ring systems, were 
carried out in [9] by using some physicochemical properties 
as their descriptors. Multiple linear regression analysis of the 
data has shown that strain energy, heat of formation and sub-
stituent’s at both the aromatic ring and ring C play important 
roles in the development of the QSAR model. The contribu-
tion of substituent’s at ring C to the model was further sup-
ported when strain energy was omitted from the model, and 
ring-type based QSAR analyses for the crinine- and lycorine-
type alkaloids were performed. A number of CoMFA models 
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have already been developed on AChE inhibitors as well 
[10-13]. 

 There are many methods for studying Structure-Activity 
Relationships (SAR), and all of them have some disadvan-
tages. The purpose of the ETM [14-20] is to overcome the 
disadvantages of the molecular descriptions used in the pre-
viously developed SAR methods [12, 16].  

 ETM pays attention to both electronic and three-dimen-
sional (3D) conformational structure of the compounds while 
previously developed QSAR methods mainly use just inte-
gral characteristics of the molecules. An integral characteris-
tic, such as lipophilicity, solubility, dipole moment and mo-
lecular weight etc. represents a molecule as a whole. Thus, 
QSAR methods do not take into account details of molecular 
structure of the compounds under study arising from the 
electronic properties of separate atoms and bonds accessible 
through different programs for quantum-chemistry calcula-
tions and 3D topology optimization. The results of the ETM 
application can afterwards be used in quantitative calcula-
tions as well [21, 22].  

 Structure-AChE inhibitor activity relationship studies 
have been performed for three series of N-benzylpiperidine 
derivatives by means of the ETM application [18], which is a 
structural approach designed for the SAR investigation. Bio-
logical activities of the compounds belonging to three differ-
ent series have been measured on mouse, human and Tor-
pedo californica AChE. Molecular fragments that are only 
specific for active compounds (‘activity features’) were 
found for each series. In a similar way, "breaks of activity" 
(i.e. molecular fragments that are typical of inactive com-
pounds and cannot be a part of an active compound) were 
calculated. Requirements necessary for a compound to be 
active were formulated as the result of detailed analysis of all 
compounds under study. The results obtained are in good 
agreement with common trends of ligand-receptor interac-
tions detected by docking [23] and X-ray data analysis [24] 
of the N-benzylpiperidine derivatives. 

 Here, the SAR study for a class of electric eel AChE in-
hibitors related to pyridazine analogues was carried out by 
using the ETM. Their conformational and quantum-chemistry 
data were obtained by the molecular mechanics and semi-
empirical quantum-chemistry methods. To develop the algo-
rithmic base for the activity prediction, Artificial Neural 
Networks (ANN) was applied to the results of the ETM (the 
approach named as combined ETM-ANN method). 

MATERIALS AND METHODS 

Data Sets  

 The compounds under study are given in Table 1, and 
their common skeletons are shown in the Scheme 1.

 Conformational analysis for a class of anti-cholinesterase 
inhibitors (AChE, 53 molecules) being pyridazine deriva-
tives was performed by molecular mechanics. After this, the 
optimized structures were used in quantum-chemical calcula-
tions (AM1-method) [25] to obtain results providing input 
data for the ETM application. With the aim of more detailed 
SAR analysis, all compounds (53 in all) [26, 27] were sepa-

rated into two classes according to their levels of activity; 
namely, active molecules with log 1/IC50 > 6.49 (27 mol.) 
and inactive molecules with IC50  6.49 (26 mol.). 

 The ETM works with molecules represented by matrices, 
which are named electronic-topological matrices of conjunc-
tion (ETMC), because they are formed of electronic and 3D-
topology data. Since details of the ETM can be found in lit-
erature [14-18], we give only the most distinguished proper-
ties of the ETM relative to other methods used in the SAR 
studies here.  

Computations for the electronic-topological approach in-
clude the following steps [15-17]:  

a. Conformational analysis. 

b. Quantum-chemical calculations. 

c. ETMC formation. 

d. ETMC processing and search of the structural features of 
activity (pharmacophores-Ph) or inactivity (anti-pharma-
cophores-APh). 

 The main procedure of the ETM (implementing afore-
mentioned phase’s c, d) is described step by step below: 

1. Provide descriptions (i.e. generate ETMCs) for all ana-
lyzed molecular structures.  

2. Set initial parameters of the ETM algorithm.  

 The success of the ETM is determined by its specific 
compound structure description language (CSDL). Every 
compound is described by an n n matrix (ETMC), where n
is the number of atoms in the molecule. Conformational, 
quantum-chemical and physical-chemical data accompany-
ing atoms and bonds of a molecule are used in the ETMCs. 
QSAR methods use some global chemical properties such as, 
lipophilicity, solubility, etc. Since each ETMC is symmetric 
with respect to its diagonal elements, only upper part of it is 
processed. Diagonal elements aii, where i mean the i-th atom 
in the molecule, represent one of the atomic parameters 
(such as atomic charge, valance activities, HOMO or LUMO 
energies, etc.). Off-diagonal elements aij can be of two kinds: 
one is for chemical bonds, and the other is for chemically 
non-bonded atoms. If i and j label chemically bonded atoms, 
then aij is a value characterizing one of the selected and fixed 
for all compounds electronic parameters of the i-j bond such 
as Wiberg’s index, Wij [28], bond energy (total, covalent or 
ionic), polarizabilty and so on. If i and j label non-bonded 
atoms, then aij is the interatomic distance between ith and jth
atoms (Rij). The ETMCs are easily understandable and ex-
tremely convenient for computer handling. In this way, the 
structures of the molecules under study get a unified descrip-
tion that is not bound to the atoms’ identity. This circum-
stance is of primary importance for the search for pharma-
cophores in quite diverse structures of biologically active 
molecules.  

 Artificial Neural Networks (ANNs) represent a group of 
methods increasingly used in drug design for the QSAR 
studies [29, 30]. This method is especially capable of eluci-
dating the structure-activity relationships when these rela-
tionships have a non-linear character. Thus, this method can 
be of significant interest for 3D QSAR studies. 
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Table 1. A List of Molecules Under Investigation 

Activity, 

Log 1/IC50
a

Compound Skeleton Type X Y 

Exp. Theo. 

1 A  1 8.00 7.63 

2 B Me H 7.68 7.69 

3 A  

N N

7.66 7.63 

4 A  3 7.66 7.57 

5 B Et H 7.57 7.56 

6 A  2 7.41 7.51 

7 C 3-Ac-Ph  7.27 7.47 

8 C 3,5-(CF3)2-Ph  7.25 7.42 

9 C 2-naphthyl  7.25 7.38 

10 C 3-pyridinyl  7.24 7.37 

11 C 3-AcNH-Ph  7.24 7.35 

12 B i-Pr H 7.21 7.27 

13 D SCH2CH2 N 7.20 7.32 

14 C Cl  7.14 7.16 

15 C 3,4-OCH2O-Ph  7.14 7.14 

16 C 2-Cl-Ph  7.10 7.11 

17 C 2-Et-Ph  7.06 7.08 

18 C 2-Me-Ph  7.05 7.04 

19 C 2-thiophenyl  7.01 6.93 

20 C 4-CN-Ph  7.00 6.96 

21 C 2-MeO-Ph  6.96 6.84 

22 B H H 6.92 6.92 

23 E N 2 6.92 6.60 

24 D OCH2CH2 N 6.85 6.88 

25 C 4-(NMe2)-Ph  6.68 6.68 

26 C MeO  6.66 6.60 

27 C H  6.52 6.56 

28 B H Me 6.49 6.49 

29 C 4-F-Ph  6.46 6.43 
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(Table 1. Contd….) 

Activity, 

Log 1/IC50
a

Compound Skeleton Type X Y 

Exp. Theo. 

30 B H i-Pr 6.37 6.38 

31 B 
N

N
 6.36 6.31 

32 E N 5 6.13 5.54 

33 D NHCH2CH2 N N 5.82 5.54 

34 C 2,4,6-(Me)3-Ph  5.52 5.71 

35 D NHCOCH2  5.38 5.24 

36 E N 1 5.25 5.45 

37 E 
N

5 5.00 5.11 

38 E N 4 4.96 5.07 

39 E N 3 4.89 5.13 

40  NHCH2CO N N 4.82 5.23 

41 E 
N

4 4.82 4.99 

42 D NHCOCH2 N N 4.77 4.75 

43 D NHCOCH2
N 4.74 4.55 

44 D NHCH2CH2 N 4.62 4.56 

45 E 
N

3 4.46 4.39 

46 E N 1 4.21 4.73 
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(Table 1. Contd….) 

Activity, 

Log 1/IC50
a

Compound Skeleton Type X Y 

Exp. Theo. 

47 E N 0 4.19 4.25 

48 E N 2 4.15 4.10 

49 E 
N

2 4.08 4.07 

50 D NHCH2CO N 3.92 3.81 

51 E N 2 3.77 3.06 

52 E N O 3 3.39 3.74 

53 E N O 2 3.10 3.98 

a IC50 in M on electric eel AChE [26,27]. 

Scheme 1.  Common molecular skeletons (A-E) of 3-[2-(1-benzylpiperidin-4-yl) ethylamino] pyridazine derivatives. 

 To have more stable activity features, every active mole-
cule is used as a template for comparison with the rest of 
molecules. As a result of this comparison, activity features 
(pharmacophores) are revealed. To decide, which of the 
pharmacophores found is better, each inactive molecule is 
used as a template for comparison with the rest of molecules 
as well. So, inactivity features (anti-pharmacophores) also 
are a part of the system for the AChE inhibitory activity pre-
diction. 

RESULTS  

The Search for Pharmacophores (Ph) and Anti-Pharma-
cophores (APh) by Using ETM 

 To apply ETM, data on the biological activity of com-
pounds (qualified at least as being either active or inactive) 
and structures of the compounds are taken from outer data-
bases or literature. (Ideally, half of the molecules should be 
active). Then the main steps of the ETM procedure are: 
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1. Conformational analysis. Minimize energy by using 
different optimization programs such as MMX (an ex-
tension of MM2 and MMP1), MMP2, and so on to get 
more reliable results depending on the complexity of the 
compounds [25, 31].  

2. ETMCs formation. Matrices are formed of the data ob-
tained from the quantum chemistry calculations for all 
molecular structures. The electronic structure of a com-
pound may be determined by either of ab initio or semi 
empirical methods. 

3. Initial settings. They are:  

– Some desirable level of probability (PA) for the es-
timation of the frequency of an activity fragment 
occurrence in the analyzed molecules.  

– The threshold of activity needed to divide the series 
under study into classes of active and inactive 
molecules. 

– A template molecule that is to be compared with the 
rest of molecules in the series. 

– Some limiting values, 1 and 2, that are used to re-
flect the flexibility of the compounds; they allow for 
diagonal and off-diagonal values to be considered as 
equivalent ones in the limits defined by the user. 

4. Search for structural fragments (through the comparison 
of all ETMCs with the template ETMC selected). The 
pharmacophores found only are to be common to all ac-
tive molecules.  

 So, the aim of the core ETM’s procedure is to find those 
fragments that, first, are common for all active compounds, 
and, second, satisfy some initial conditions (precision values 
and probability of their occurrence in active compounds). In 
the case, when either the estimation of the fragment by 
means of the probabilistic criterion PA does not correspond 
to the level that has been set initially, or the fragments are 
not informative enough, template molecule and/or other ini-
tial settings are changed, and steps 3–5 are repeated. A 
common scheme of the ETM is shown in Fig. (1).  

 Under appropriate template molecule and other pre-set 
values, the activity features (or pharmacophores, Phi) can be 
used to predict the activity of interest for a new series of 
molecules with the help of the criteria PA estimating each 
such feature. A criterion that is commonly used in structural 
methods for evaluating the probability of Phi occurrence in a 
series under study is given by the following formula:  

PA(Phi)=(nA+1)/(nA+nIA+2), 

where nA, nIA are numbers of active/inactive molecules, re-
spectively, which contain the pharmacophore Phi. The same 
procedure can be done to determine features of inactivity, or 
‘breaks of activity’, by choosing one of the inactive com-
pounds as a template. 

 In accordance with the main steps of the ETM study, for 
all compounds in the series effective charges on atoms (Qi,
local atomic characteristics) were chosen as diagonal ele-
ments and either bond characteristics (Wiberg’s indices, Wij)

or optimized distances (Rij, in Å) were used as off-diagonal 
elements of their ETMCs.  

 For each molecule taken as a template, its ETMC was 
compared with the ETMCs of the rest of the molecules. The 
comparison resulted in a few common structural fragments 
being either pharmacophores or anti-pharmacophores. The 
fragments were found as sub matrices of the corresponding 
template ETMCs, high-active or low-active ones (their sub 
matrices are names ET-sub matrices of contiguity, or ETSCs, 
for short). A system for the activity prognostication was 
formed of the fragments of the two types, to predict ‘activity’ 
or ‘inactivity’ of an unknown compound.  

DISCUSSION 

Determination of Pharmacophores and Anti- Pharma-

cophores Features 

 The ETM-calculations detected Ph1 pharmacophore 
found in 24 of 27 were high-active molecules. Thus, the 
probability PA of its realization in this class is about 0.93. 
Ph1, its statistical estimate, and the corresponding ETSC 
(ETSCPh1) of the order 7x7, which has been calculated rela-
tive to the template compound 1, are shown in Fig. (2). This 
sub-matrix was found after setting some allowable limits for 
the matrix elements comparison. For both classes, the limits 
for the diagonal and off-diagonal elements comparison are 

1= 0.024 and 2= 0.06, respectively. 

 As seen from the pharmacophore structure, Ph1 consists 
of 7 atoms ( 16, 20, 21, N22, C23, C25 and C29). The 20- 21
pair of atoms, for example, is chemically bonded, and the 
bond order (Wiberg’s index, Wij) is 1.03 . The distance be-
tween N22 and C29 atoms (Rij) is 4.44 Å.  

 Anti-pharmacophores (APhi), along with pharmacopho-
res, are also of interest for the researchers as those parts of 
molecules that are responsible for the considerable decrease 
or complete loss of the activity in view. To find anti-
pharmacophores, inactive molecule 52 was selected as a 
template molecule. As an illustration, the APh1 anti-

Fig. (1). The framework of the ETM.
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pharmacophore is shown in the Fig. (3), with corresponding 
sub-matrix given nearby.  

C4 C5 C15 N20 C21

0.01 1.18 7.56 10.78 11.77 

  0.03 6.46 9.85 10.73 

  0.12 3.90 4.50 

1= ±0.04, 2= ±0.14  -0.15 0.99 

nIA / nA=16/0, PIA = 0.94 0.09 

Fig. (3). ETSC and corresponding structure of the anti-pharma-
cophore APh1 found relative to inactive molecule 52.

 The anti-pharmacophore APh1 consists of 5 atoms enters 
the structures of 16 inactive molecules and is not found in 
active molecules (see Fig. (3)). The probability level of its 
realization is 94%. When comparing the structures of the 
pharmacophores and anti-pharmacophores, one can pay at-
tention to the differences in their spatial and electron charac-
teristics. Thus, pharmacophores and anti-pharmacophores 
can play their role in the activity prediction only if both types 
of fragments participate in the process of prognosis. Thus, 
the set of activity/inactivity fragments found as the result of 
this study forms a basis for a system of the anti-
cholinesterase activity prediction. The statistic parameters of 
active and inactive compounds for studied series were given 
in Table 2.

Table 2. Statistic Parameters of Active and Inactive Com-

pounds for Studied Series 

Predicted Active Inactive Total 

Pharmacophores a=24 b=1 a+b=25 

Antipharmacophores c=0 d=16 c+d=16 

Total a+c=24 b+d=17 n=41 

Sensitivity =  a/(a+c) % of correctly= 24/24 = 100% predicted actives. 

Specificity = d/(b+d) % of correctly= predicted inactives = 16/17 =94%. 

Active Predictive Value = a/(a+b) % =24/25=96%predicted actives that are actually 

inactive. 

Inactive Predictive Value = d/(c+d) = 16/16 = 100%  predicted inactives that are actu-
ally active. 

Concordance = (a+d)/n = 40/41 =98%. 

 The ability of the aforementioned system to divide com-
pounds of the training set into classes of activity/inactivity is 
illustrated in Fig. (4) by the frequencies of the fragments 
occurrence in the compounds from the training set. The fre-
quencies are shown in dependence with the level of anti-
cholinesterase activity of the compounds in view.  

 As seen from the graph in the figure, in the class of active 
compounds, there is a group of high- active compounds and 
another group of compounds of low activity (named ‘inac-
tive compounds’). As seen from Fig. (4), the pharmacopho-
res and anti-pharmacophores found as the result of the ETM
application was used as a basis for a system formation that is 
capable of activity prediction for new derivatives.  

 The highest occupied molecular orbital’s ( ) and 
the lowest unoccupied molecular orbital’s (LUMO), called 
also frontier orbital’s may also play an important role in the 
donor-acceptor interaction of a substance with the corre-
sponding receptors. Analysis of HOMOs for the compounds 
containing Ph1 and APh1 has shown that atoms with the 
highest values of the atomic orbital coefficients are mainly 
those atoms that enter into the pharmacophores. Graphical 
representation of the HOMO orbitals is given in Fig. (5). 

 orbital for the template compound 1 consists of 
orbitals of those atoms that form piperidine and, partially, 
benzyl rings. In contrast to h1,  orbital of h1 
(compound 52) consists of all atoms of morpholine ring and 
carbon atoms of propyl group. All the said suggests again an 
important role of these atoms in the substrate-receptor inter-
action.  

Combined ETM-Artificial Neural Networks Approach 

(ETM-ANN) 

 The ETM data (initial matrices and the fragments found) 
were used in the NN applications with the aim of obtaining 
an algorithmic basis for the activity prediction (at place of 
manual processing). Here, some important observations re-
lated to their joint use are presented. To analyze the data, we 
used one of the most well known neural networks, namely, 
the feed-forward neural networks (FFNNs) trained with the 
back propagation algorithm [32, 33]. The supervised learning  

C16 C20 C21 N22 C23 C25 C29

0.01 2.58 3.93  4.44 4.94 6.02 8.30 

  0.01 1.03  2.52 3.09 4.50 6.80 

  0.11  0.99 2.42 3.77 5.81 

   -0.15 0.99 2.47 4.44 

 0.10 1.02 3.86 

1= ±0.024, 2= ±0.06 0.02 2.46 

nA /nIA =24/1, PA= 0.93   0.01 

Fig. (2). ETSC and corresponding structure of the pharmacophore 
Ph1 found relative to active molecule 1.

N N
NH N
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20
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25
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N N

NH N O

4

5

15
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was performed using a variant of FFNN known as the Asso-
ciative Neural Networks (ASNN). Below, we briefly summa-
rize the principles of this approach, while the detailed de-
scription of the algorithm can be found in literature [34]. The 
ASNN selected consists of three-layers with five neurons in 
one hidden layer. A single output node was used to code 
activities of the AChE inhibitors. The bias neurons were pre-
sented in the both input and hidden layers. At least M=100 
independent FFNN were trained to analyze each set of vari-
ables. The predicted values of each analyzed case were aver-
aged over all M network predictions and the means were 

used to calculate statistical coefficients with targets. The 
other details of the algorithm can be found elsewhere  
[35, 36].  

 The avoidance of over fitting/overtraining has been 
shown to be an important factor for improvement of predic-
tive ability and correct selection of variables in the FFNNs. 
In short, the principal idea of the combined approach is to 
determine the weights of fragments represented by ETSCs 
and, afterwards, to use these weights as descriptors (WDs) 
for the ASNNs training. To do this, the fragments are being 

Fig. (5). A three-dimensional view of HOMO/LUMO orbitals for template compounds 1 and 52.

Fig. (4). Frequency of the fragments’ occurrences in the compounds studied: for pharmacophores Ph1 and Ph2; for anti-pharmacophores 
APh1 and APh2.
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projected on the Kohonen’s maps that correspond to their 
initial ETMCs. In such way the degree of each fragment’s 
presence in a molecule can be determined.  

 The first step is a procedure that can be called as “triples 
calculation”. i.e. data elements in the initial set are triples 
(d1, d2, d3), where d1 and d2 are charges for a pair of atoms 
and d3 is a connection between them. The values of di,
i=1,2,3, are taken from the ETMCs. The total number of tri-
ples equals to the amount of all two-atomic connections 
taken from all ETMCs. Second step is the Kohonen’s net-
work (SOM) initialization and training (detailed description 
of a Kohonen’s network can be found in [33]). The approxi-
mate number of elements in our Kohonen’s map is calculated 
as S=k*SETM, where k varies in the range of [1.0, 2.0], and 
SETM is the size of the largest ETM matrix. The third step 
involves the calculations of pharmacophores as sub matrices 
of the template ETMCs. At the fourth step, the weight of 
each fragment (that is either a pharmacophore or antiphar-
macophore) is estimated versus each compound as the frag-
ment’s projection error, Eij, relative to those nodes of the 
Kohonen’s map that were found for its comprising ETMC. 
Then its weight is taken as the inverse of its error Eij: Wij=1-
Eij/Emax,j. Here i is the molecule’s number, j is the fragment’s 
number, and Emax,j is the maximal error, for all j. A new table 
containing the calculated fragment weights (descriptors) is 
being formed for further ASNN training. 

 Briefly, the number of neurons in the input layer corre-
sponds to the number of descriptors. The hidden layer con-
tains five neurons. The bias neuron is presented both on the 
input and hidden layers. An ensemble of M=100 neural net-
works was trained. By this, the activity values of each com-
pound were calculated for each ASNN and averaged over all 
M networks. This value was used to calculate cross-
validation coefficients. The quality of the model was tested 
by the leave-one-out cross-validation q2 value defined as  

q2 = (SD-press)/SD; 

introduced by Cramer et al. [37]. Here SD represents the 
variance of a target value relative to its mean and 'press' is 
the average squared errors of predicted values obtained from 
leave-one-out (LOO) procedure. By the method, each mole-
cule is removed from the training set, and the remaining set 
is used to separate molecules into classes of activity, thereby 
predicting the activity of this molecule and evaluating the 
quality of the decision rule. The last step includes application 
of the pruning methods [38, 39] that aim in a set of the most 
relevant ETMC fragments selection. 

 These algorithms operate in a manner similar to step-wise 
multiple regression analysis and exclude at each step one 
input parameter that was estimated to be non-significant. The 
pruning algorithms were used in the current study to deter-
mine significant parameters of input data points of the ana-
lyzed molecules as described in references [38, 39]. 

 To reflect the realistic internal structure of the data, all 
compounds were separated into two main classes, as it was 
said before. The first one included 27 active compounds, and 
the second series included 26 ‘inactive’ compounds. For the 
data, 249 fragments were selected. The first step consisted of 
using the LOO cross-validation procedure for the total set of 

compounds. The ASNNs recognized correctly 92%, or 49 
from 53 compounds. Next, the importance of the detected 
fragments for the observed activity was evaluated by using 
pruning methods. The most part of the fragments (taken as 
descriptors) were detected as non-significant and removed by 
the pruning algorithms. As the result, only 13 ETMC-
fragments were chosen as the most important ones from 249 
fragments in total. By this, ASNN classified correctly 94%, 
or 50 compounds from 53.  

 In Fig. (6), for template compounds 1 and 52 those mo-
lecular sides are shown where generalized ETSCs (one 
pharmacophore and one anti-pharmacophore) are realized. 
As seen from the figure, the atoms that enter the fragments 
found by means of ETM and ETM-NN are practically same. 

Fig. (6). Neural network leave-one-out cross-validation log 1/IC50

results. 

 The main goal of the second stage in the data analysis 
was to evaluate an efficacy of ASNN in the SAR model gen-
eration for the real values of the activity. The first step was 
the LOO cross-validation procedure applied to the total set of 
compounds. It has been found that a cross-validated q2 coef-
ficient of the ASNN predictions was 0.72±0.01. After apply-
ing the pruning methods but 9 fragments were selected from 
249 in total, the cross-validated q2 value was found as 
0.88±0.01.  

 Thus, the obtained results indicate that application of 
pruning methods provides higher prognosing ability com-
pared to the case when all descriptors are used for the activi-
ties prediction. As it is seen, the approach presented in this 
study has shown quite satisfactory results (Fig. (7)).  

 This fact tells in favor of workability of the both models 
found. These models can be applied to the design of new 
potent AChE inhibitory activity drugs.  

CONCLUSION 

 A series of 3-[2-(1-Benzylpiperidin-4-yl) ethylamino] 
pyridazine anti-cholinesterase activity is studied by means of 
the ETM, which takes into account both structural and elec-
tronic characteristics of molecules. Based on pharmacopho-
res and anti-pharmacophores calculated by the ETM-
software as sub-matrices containing important spatial and 
quantum chemistry characteristics, a system for the activity 
prognostication is developed. The system was tested on a 
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few molecules with molecular skeletons others than those 
that were characteristic of the training sets. It allows for 
identifying the presence/absence of the anti-cholinesterase 
activity (with probability of 93%) in molecules with diverse 
structures and predicting the level of the activity as well. 

 The initial data analysis witnesses the intimate relation of 
the activity exhibited by molecules to their spatial and elec-
tronic states. Any changes in the values of the matrices that 
excel the limits allowed cause diminishing or complete loss 
of the activity. The system for the anti-cholinesterase activity 
prediction is supposed to be used for the synthesis of new 
potent drugs. It makes screening and design of new potential 
drugs easy and effective. 
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