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Abstract: The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method
(ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53
molecules) being pyridazine derivatives. AChE activities of the series were measured in ICs, units, and relative to the ac-
tivity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and anti-
pharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteris-
tics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conforma-
tional and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks,
namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning
was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing re-
vealed that the high ETM’s ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of
HOMOs for the compounds containing Phl and APhl has shown that atoms with the highest values of the atomic orbital
coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharma-
cophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction.
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INTRODUCTION

Alzheimer’s disease (AD) associated with aging affects
up to 5% of people over 65 years, rising to 20% of those
over 80 years [1]. The disease is characterized by the pres-
ence of some neuropath logical markers detected in the brain
of AD patients, which are the f-amyloid (SA) plaques and
the neurofibrillary tangles. A pathogenic role is ascribed to
these lesions, and many research programs that are focused
on drugs capable of modifying the course of the disease are
targeting both their formation and neurotoxicity [2].

One of a few undisputed evidences in the neuropathology
of the AD is loss of cholinergic neurons occurring in differ-
ent areas of the central nervous system (CNS), mainly the
cerebral cortex and hippocampus, and it is not a surprise that
the early pharmacological approaches to the treatment of the
AD patients were aimed at increasing the availability of the
cholinergic neuro-transmitter acetylcholine (ACh) [3]. On
this basis, the cholinergic hypothesis became the leading
strategy for the development of AD drugs [4, 5]. Tacrine was
the first acetylcholinesterase (AChE) inhibitor launched in
1993 as the first drug for the symptomatic treatment of AD
[6].

Three-dimensional quantitative structure—activity rela-
tionship (3D QSAR) studies were performed on AChE in-
hibitors, based on the molecular docking scores obtained by
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using FlexX and FlexiDock and comparative molecular field
analysis (CoMFA) [7].

A diverse approach to the quantitative structure—activity
relationship (QSAR) of tacrine derivatives against acetylcho-
linesterase (AChE) activity was applied in [8] using the vari-
ables selection for stepwise multiple linear regression (MLR),
genetic algorithm (GA)-MLR, and simulated annealing (SA)-
MLR. AChE activity (log RA) of tacrine derivatives was
expressed with acceptable explanation (95.5-95.9%) and
good predictive power (94.5-95.2%), respectively, in the
models. The best equation was obtained from simulated an-
nealing (SA) MLR with greater explanatory capability and
better prediction, with a smaller standard error than other
methods. The resulting models with the given descriptors
illustrate the significant role of hydrophobic and electrostatic
interactions for the AChE activity increase, while hydro-
philic and topological features of molecules were shown to
cause the decrease of AChE activity.

Quantitative structure—activity relationships (QSAR)
studies on 24 Amaryllidaceae alkaloids being AChE inhibi-
tors and belonging to five-membered ring systems, were
carried out in [9] by using some physicochemical properties
as their descriptors. Multiple linear regression analysis of the
data has shown that strain energy, heat of formation and sub-
stituent’s at both the aromatic ring and ring C play important
roles in the development of the QSAR model. The contribu-
tion of substituent’s at ring C to the model was further sup-
ported when strain energy was omitted from the model, and
ring-type based QSAR analyses for the crinine- and lycorine-
type alkaloids were performed. A number of CoMFA models

© 2009 Bentham Science Publishers Ltd.



326 Medicinal Chemistry, 2009, Vol. 5, No. 4

have already been developed on AChE inhibitors as well
[10-13].

There are many methods for studying Structure-Activity
Relationships (SAR), and all of them have some disadvan-
tages. The purpose of the ETM [14-20] is to overcome the
disadvantages of the molecular descriptions used in the pre-
viously developed SAR methods [12, 16].

ETM pays attention to both electronic and three-dimen-
sional (3D) conformational structure of the compounds while
previously developed QSAR methods mainly use just inte-
gral characteristics of the molecules. An integral characteris-
tic, such as lipophilicity, solubility, dipole moment and mo-
lecular weight etc. represents a molecule as a whole. Thus,
QSAR methods do not take into account details of molecular
structure of the compounds under study arising from the
electronic properties of separate atoms and bonds accessible
through different programs for quantum-chemistry calcula-
tions and 3D topology optimization. The results of the ETM
application can afterwards be used in quantitative calcula-
tions as well [21, 22].

Structure-AChE inhibitor activity relationship studies
have been performed for three series of N-benzylpiperidine
derivatives by means of the ETM application [18], which is a
structural approach designed for the SAR investigation. Bio-
logical activities of the compounds belonging to three differ-
ent series have been measured on mouse, human and 7or-
pedo californica AChE. Molecular fragments that are only
specific for active compounds (‘activity features’) were
found for each series. In a similar way, "breaks of activity"
(i.e. molecular fragments that are typical of inactive com-
pounds and cannot be a part of an active compound) were
calculated. Requirements necessary for a compound to be
active were formulated as the result of detailed analysis of all
compounds under study. The results obtained are in good
agreement with common trends of ligand-receptor interac-
tions detected by docking [23] and X-ray data analysis [24]
of the N-benzylpiperidine derivatives.

Here, the SAR study for a class of electric eel AChE in-
hibitors related to pyridazine analogues was carried out by
using the ETM. Their conformational and quantum-chemistry
data were obtained by the molecular mechanics and semi-
empirical quantum-chemistry methods. To develop the algo-
rithmic base for the activity prediction, Artificial Neural
Networks (ANN) was applied to the results of the ETM (the
approach named as combined ETM-ANN method).

MATERIALS AND METHODS
Data Sets

The compounds under study are given in Table 1, and
their common skeletons are shown in the Scheme 1.

Conformational analysis for a class of anti-cholinesterase
inhibitors (AChE, 53 molecules) being pyridazine deriva-
tives was performed by molecular mechanics. After this, the
optimized structures were used in quantum-chemical calcula-
tions (AMI1-method) [25] to obtain results providing input
data for the ETM application. With the aim of more detailed
SAR analysis, all compounds (53 in all) [26, 27] were sepa-
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rated into two classes according to their levels of activity;
namely, active molecules with log 1/ICsy > 6.49 (27 mol.)
and inactive molecules with ICso < 6.49 (26 mol.).

The ETM works with molecules represented by matrices,
which are named electronic-topological matrices of conjunc-
tion (ETMC), because they are formed of electronic and 3D-
topology data. Since details of the ETM can be found in lit-
erature [14-18], we give only the most distinguished proper-
ties of the ETM relative to other methods used in the SAR
studies here.

Computations for the electronic-topological approach in-
clude the following steps [15-17]:

a. Conformational analysis.

b. Quantum-chemical calculations.
c. ETMC formation.
d

. ETMC processing and search of the structural features of
activity (pharmacophores-Ph) or inactivity (anti-pharma-
cophores-APh).

The main procedure of the ETM (implementing afore-
mentioned phase’s c, d) is described step by step below:

1. Provide descriptions (i.e. generate ETMCs) for all ana-
lyzed molecular structures.

2. Set initial parameters of the ETM algorithm.

The success of the ETM is determined by its specific
compound structure description language (CSDL). Every
compound is described by an # x n matrix (ETMC), where n
is the number of atoms in the molecule. Conformational,
quantum-chemical and physical-chemical data accompany-
ing atoms and bonds of a molecule are used in the ETMCs.
QSAR methods use some global chemical properties such as,
lipophilicity, solubility, etc. Since each ETMC is symmetric
with respect to its diagonal elements, only upper part of it is
processed. Diagonal elements a;;, where i mean the i-th atom
in the molecule, represent one of the atomic parameters
(such as atomic charge, valance activities, HOMO or LUMO
energies, etc.). Off-diagonal elements a;; can be of two kinds:
one is for chemical bonds, and the other is for chemically
non-bonded atoms. If i and j label chemically bonded atoms,
then g;; is a value characterizing one of the selected and fixed
for all compounds electronic parameters of the i-j bond such
as Wiberg’s index, W [28], bond energy (total, covalent or
ionic), polarizabilty and so on. If i and j label non-bonded
atoms, then aj; is the interatomic distance between ith and jth
atoms (R;). The ETMCs are easily understandable and ex-
tremely convenient for computer handling. In this way, the
structures of the molecules under study get a unified descrip-
tion that is not bound to the atoms’ identity. This circum-
stance is of primary importance for the search for pharma-
cophores in quite diverse structures of biologically active
molecules.

Artificial Neural Networks (ANNs) represent a group of
methods increasingly used in drug design for the QSAR
studies [29, 30]. This method is especially capable of eluci-
dating the structure-activity relationships when these rela-
tionships have a non-linear character. Thus, this method can
be of significant interest for 3D QSAR studies.
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Table 1. A List of Molecules Under Investigation

Activity,
Compound Skeleton Type X Y Log 1/1Cs"

Exp. Theo.
1 A 1 8.00 7.63
2 B Me H 7.68 7.69
3 A 7.66 7.63
4 A 3 7.66 7.57
5 B Et H 7.57 7.56
6 A 2 7.41 7.51
7 C 3-Ac-Ph 7.27 7.47
8 C 3,5-(CF3),-Ph 7.25 7.42
9 C 2-naphthyl 7.25 7.38
10 C 3-pyridinyl 7.24 7.37
11 C 3-AcNH-Ph 7.24 7.35
12 B i-Pr H 721 727
13 D SCH,CH, 4<3N — 7.20 7.32
14 C Cl 7.14 7.16
15 C 3,4-OCH,0O-Ph 7.14 7.14
16 C 2-Cl-Ph 7.10 7.11
17 C 2-Et-Ph 7.06 7.08
18 C 2-Me-Ph 7.05 7.04
19 C 2-thiophenyl 7.01 6.93
20 C 4-CN-Ph 7.00 6.96
21 C 2-MeO-Ph 6.96 6.84
22 B H H 6.92 6.92
23 E @N /\Q 2 6.92 6.60
24 D OCH,CH, 4<3N — 6.85 6.88
25 C 4-(NMe,)-Ph 6.68 6.68
26 C MeO 6.66 6.60
27 C H 6.52 6.56
28 B H Me 6.49 6.49
29 C 4-F-Ph 6.46 6.43
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Activity,
Compound Skeleton Type X Y Log 1/1Cs"
Exp. Theo.
30 B H i-Pr 6.37 6.38
SN
31 B I 6.36 6.31
_N
32 E 5—1'\1\/® 5 6.13 5.54
33 D NHCH,CH, —N N— 5.82 5.54
\__/
34 C 2,4,6-(Me)s-Ph 5.52 5.71
35 D NHCOCH, 5.38 5.24
36 E E@N 1 525 5.45
37 E . 5 5.00 5.11
‘—N
38 E 5—1'\1\/® 4 4.96 5.07
39 E 5—1'\1\/® 3 4.89 5.13
40 NHCH,CO —N N— 482 5.23
\__/
41 E . 4 482 4.99
‘—N
42 D NHCOCH, —N N— 4.77 475
\__/
43 D NHCOCH, - NC>7 4.74 4.55
44 D NHCH,CH, — NC>7 4.62 456
45 E . 3 4.46 439
‘—N
46 E D 1 421 473
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(Table 1. Contd....)

Activity,
Compound Skeleton Type X Y Log 1/ICs,*
Exp. Theo.
47 E E—CN /\Q 0 419 425
48 E i—N ) 2 4.15 4.10
49 E . C@ 2 4.08 4.07
—N
50 D NHCH,CO —NC>— 3.92 3.81
51 E - TL\/Q 2 3.77 3.06
/N
52 E —N 0 3 3.39 3.74
CoN/
/N
53 E — 0 2 3.10 3.98
N/

*1Cso in uM on electric eel AChE [26,27].
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Scheme 1. Common molecular skeletons (A-E) of 3-[2-(1-benzylpiperidin-4-yl) ethylamino] pyridazine derivatives.

To have more stable activity features, every active mole-
cule is used as a template for comparison with the rest of
molecules. As a result of this comparison, activity features
(pharmacophores) are revealed. To decide, which of the
pharmacophores found is better, each inactive molecule is
used as a template for comparison with the rest of molecules
as well. So, inactivity features (anti-pharmacophores) also
are a part of the system for the AChE inhibitory activity pre-
diction.

RESULTS

The Search for Pharmacophores (Ph) and Anti-Pharma-
cophores (APh) by Using ETM

To apply ETM, data on the biological activity of com-
pounds (qualified at least as being either active or inactive)
and structures of the compounds are taken from outer data-
bases or literature. (Ideally, half of the molecules should be
active). Then the main steps of the ETM procedure are:
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1. Conformational analysis. Minimize energy by using
different optimization programs such as MMX (an ex-
tension of MM2 and MMP1), MMP2, and so on to get
more reliable results depending on the complexity of the
compounds [25, 31].

2. ETMCs formation. Matrices are formed of the data ob-
tained from the quantum chemistry calculations for all
molecular structures. The electronic structure of a com-
pound may be determined by either of ab initio or semi
empirical methods.

3. Initial settings. They are:

—  Some desirable level of probability (P,4) for the es-
timation of the frequency of an activity fragment
occurrence in the analyzed molecules.

—  The threshold of activity needed to divide the series
under study into classes of active and inactive
molecules.

— A template molecule that is to be compared with the
rest of molecules in the series.

—  Some limiting values, 8; and §,, that are used to re-
flect the flexibility of the compounds; they allow for
diagonal and off-diagonal values to be considered as
equivalent ones in the limits defined by the user.

4. Search for structural fragments (through the comparison
of all ETMCs with the template ETMC selected). The

pharmacophores found only are to be common to all ac-
tive molecules.

So, the aim of the core ETM’s procedure is to find those
fragments that, first, are common for all active compounds,
and, second, satisfy some initial conditions (precision values
and probability of their occurrence in active compounds). In
the case, when either the estimation of the fragment by
means of the probabilistic criterion P, does not correspond
to the level that has been set initially, or the fragments are
not informative enough, template molecule and/or other ini-
tial settings are changed, and steps 3-5 are repeated. A
common scheme of the ETM is shown in Fig. (1).

Under appropriate template molecule and other pre-set
values, the activity features (or pharmacophores, Ph;) can be
used to predict the activity of interest for a new series of
molecules with the help of the criteria P, estimating each
such feature. A criterion that is commonly used in structural
methods for evaluating the probability of Ph; occurrence in a
series under study is given by the following formula:

Pa(Ph)=(nat1)/(natniat2),

where n,, npa are numbers of active/inactive molecules, re-
spectively, which contain the pharmacophore Ph;. The same
procedure can be done to determine features of inactivity, or
‘breaks of activity’, by choosing one of the inactive com-
pounds as a template.

In accordance with the main steps of the ETM study, for
all compounds in the series effective charges on atoms (Q;,
local atomic characteristics) were chosen as diagonal ele-
ments and either bond characteristics (Wiberg’s indices, W}))
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Fig. (1). The framework of the ETM.

or optimized distances (R;, in A) were used as off-diagonal
elements of their ETMCs.

For each molecule taken as a template, its ETMC was
compared with the ETMCs of the rest of the molecules. The
comparison resulted in a few common structural fragments
being either pharmacophores or anti-pharmacophores. The
fragments were found as sub matrices of the corresponding
template ETMCs, high-active or low-active ones (their sub
matrices are names ET-sub matrices of contiguity, or ETSCs,
for short). A system for the activity prognostication was
formed of the fragments of the two types, to predict ‘activity’
or ‘inactivity’ of an unknown compound.

DISCUSSION

Determination of Pharmacophores and Anti- Pharma-
cophores Features

The ETM-calculations detected Phl pharmacophore
found in 24 of 27 were high-active molecules. Thus, the
probability P, of its realization in this class is about 0.93.
Phl, its statistical estimate, and the corresponding ETSC
(ETSCpy) of the order 7x7, which has been calculated rela-
tive to the template compound 1, are shown in Fig. (2). This
sub-matrix was found after setting some allowable limits for
the matrix elements comparison. For both classes, the limits
for the diagonal and off-diagonal elements comparison are
6;=10.024 and 5,= 0.06, respectively.

As seen from the pharmacophore structure, Phl consists
of 7 atoms (C16, Cz(), C21, N22, C23, C25 and ng). The CZO_CZI
pair of atoms, for example, is chemically bonded, and the
bond order (Wiberg’s index, W) is 1.03 &. The distance be-
tween Ny, and Cy atoms (Rj) is 4.44 A.

Anti-pharmacophores (4Ph;), along with pharmacopho-
res, are also of interest for the researchers as those parts of
molecules that are responsible for the considerable decrease
or complete loss of the activity in view. To find anti-
pharmacophores, inactive molecule 52 was selected as a
template molecule. As an illustration, the APhl anti-
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22 25
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Ci | Cu Cu N Cy | Cs [
001 [ 258 3.93 444 494 [ 6.02 | 830
0.01 1.03 252 3.09 [ 450 | 680
0.11 0.99 242 | 377 | 581
-0.15 099 | 247 | 444
010 | 1.02 |386

/= +0.024, 8,= +0.06 0.02 2.46

Ny /s =24/1, P4=0.93 0.01

Fig. (2). ETSC and corresponding structure of the pharmacophore
Phl found relative to active molecule 1.

pharmacophore is shown in the Fig. (3), with corresponding
sub-matrix given nearby.

15 21
C, Cs Cis N2 Cy
0.01 1.18 7.56 10.78 11.77
0.03 6.46 9.85 10.73
0.12 3.90 4.50
8= =£0.04, 5,= +0.14 -0.15 0.99
nia / 1,=16/0, Pjs = 0.94 0.09

Fig. (3). ETSC and corresponding structure of the anti-pharma-
cophore APhI found relative to inactive molecule 52.

The anti-pharmacophore APhI consists of 5 atoms enters
the structures of 16 inactive molecules and is not found in
active molecules (see Fig. (3)). The probability level of its
realization is 94%. When comparing the structures of the
pharmacophores and anti-pharmacophores, one can pay at-
tention to the differences in their spatial and electron charac-
teristics. Thus, pharmacophores and anti-pharmacophores
can play their role in the activity prediction only if both types
of fragments participate in the process of prognosis. Thus,
the set of activity/inactivity fragments found as the result of
this study forms a basis for a system of the anti-
cholinesterase activity prediction. The statistic parameters of
active and inactive compounds for studied series were given
in Table 2.
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Table2. Statistic Parameters of Active and Inactive Com-
pounds for Studied Series
Predicted Active Inactive Total
Pharmacophores a=24 b=1 a+b=25
Antipharmacophores c=0 d=16 ct+d=16
Total atc=24 b+d=17 n=41
Sensitivity = a/(at+c) % of correctly=24/24 = 100% predicted actives.
Specificity = d/(b+d) % of correctly= predicted inactives = 16/17 =94%.

Active Predictive Value = a/(a+b) % =24/25=96%predicted actives that are actually
inactive.

Inactive Predictive Value = d/(c+d) = 16/16 = 100% predicted inactives that are actu-
ally active.

Concordance = (a+d)/n =40/41 =98%.

The ability of the aforementioned system to divide com-
pounds of the training set into classes of activity/inactivity is
illustrated in Fig. (4) by the frequencies of the fragments
occurrence in the compounds from the training set. The fre-
quencies are shown in dependence with the level of anti-
cholinesterase activity of the compounds in view.

As seen from the graph in the figure, in the class of active
compounds, there is a group of high- active compounds and
another group of compounds of low activity (named ‘inac-
tive compounds’). As seen from Fig. (4), the pharmacopho-
res and anti-pharmacophores found as the result of the ETM
application was used as a basis for a system formation that is
capable of activity prediction for new derivatives.

The highest occupied molecular orbital’s (HOMO) and
the lowest unoccupied molecular orbital’s (LUMO), called
also frontier orbital’s may also play an important role in the
donor-acceptor interaction of a substance with the corre-
sponding receptors. Analysis of HOMOs for the compounds
containing Phl and APhl has shown that atoms with the
highest values of the atomic orbital coefficients are mainly
those atoms that enter into the pharmacophores. Graphical
representation of the HOMO orbitals is given in Fig. (5).

HOMO orbital for the template compound 1 consists of
orbitals of those atoms that form piperidine and, partially,
benzyl rings. In contrast to Phl/, HOMO orbital of APkl
(compound 52) consists of all atoms of morpholine ring and
carbon atoms of propyl group. All the said suggests again an
important role of these atoms in the substrate-receptor inter-
action.

Combined ETM-Artificial Neural Networks Approach
(ETM-ANN)

The ETM data (initial matrices and the fragments found)
were used in the NN applications with the aim of obtaining
an algorithmic basis for the activity prediction (at place of
manual processing). Here, some important observations re-
lated to their joint use are presented. To analyze the data, we
used one of the most well known neural networks, namely,
the feed-forward neural networks (FFNNs) trained with the
back propagation algorithm [32, 33]. The supervised learning
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Fig. (4). Frequency of the fragments’ occurrences in the compounds studied: for pharmacophores Pkl and Ph2; for anti-pharmacophores

APhl and APh2.

was performed using a variant of FFNN known as the Asso-
ciative Neural Networks (ASNN). Below, we briefly summa-
rize the principles of this approach, while the detailed de-
scription of the algorithm can be found in literature [34]. The
ASNN selected consists of three-layers with five neurons in
one hidden layer. A single output node was used to code
activities of the AChE inhibitors. The bias neurons were pre-
sented in the both input and hidden layers. At least M=100
independent FFNN were trained to analyze each set of vari-
ables. The predicted values of each analyzed case were aver-
aged over all M network predictions and the means were

used to calculate statistical coefficients with targets. The
other details of the algorithm can be found elsewhere
[35,36].

The avoidance of over fitting/overtraining has been
shown to be an important factor for improvement of predic-
tive ability and correct selection of variables in the FFNNS.
In short, the principal idea of the combined approach is to
determine the weights of fragments represented by ETSCs
and, afterwards, to use these weights as descriptors (WDs)
for the ASNNSs training. To do this, the fragments are being

HOMO-1

HOMO-1

.}_Q‘”

LUMO-1

LUMO-1

compound 1

compound 52

Fig. (5). A three-dimensional view of HOMO/LUMO orbitals for template compounds 1 and 52.
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projected on the Kohonen’s maps that correspond to their
initial ETMCs. In such way the degree of each fragment’s
presence in a molecule can be determined.

The first step is a procedure that can be called as “triples
calculation”. i.e. data elements in the initial set are triples
(d1, d2, d3), where dI and d2 are charges for a pair of atoms
and d3 is a connection between them. The values of di,
i=1,2,3, are taken from the ETMCs. The total number of tri-
ples equals to the amount of all two-atomic connections
taken from all ETMCs. Second step is the Kohonen’s net-
work (SOM) initialization and training (detailed description
of a Kohonen’s network can be found in [33]). The approxi-
mate number of elements in our Kohonen’s map is calculated
as S=k*Sgmvm, where k varies in the range of [1.0, 2.0], and
Serm is the size of the largest ETM matrix. The third step
involves the calculations of pharmacophores as sub matrices
of the template ETMCs. At the fourth step, the weight of
each fragment (that is either a pharmacophore or antiphar-
macophore) is estimated versus each compound as the frag-
ment’s projection error, Ej, relative to those nodes of the
Kohonen’s map that were found for its comprising ETMC.
Then its weight is taken as the inverse of its error Ej: W;=1-
E;i/Eax;. Here i is the molecule’s number, j is the fragment’s
number, and £, is the maximal error, for all j. A new table
containing the calculated fragment weights (descriptors) is
being formed for further ASNN training.

Briefly, the number of neurons in the input layer corre-
sponds to the number of descriptors. The hidden layer con-
tains five neurons. The bias neuron is presented both on the
input and hidden layers. An ensemble of M=100 neural net-
works was trained. By this, the activity values of each com-
pound were calculated for each ASNN and averaged over all
M networks. This value was used to calculate cross-
validation coefficients. The quality of the model was tested
by the leave-one-out cross-validation ¢° value defined as

q° = (SD-press)/SD;

introduced by Cramer et al. [37]. Here SD represents the
variance of a target value relative to its mean and press’ is
the average squared errors of predicted values obtained from
leave-one-out (LOO) procedure. By the method, each mole-
cule is removed from the training set, and the remaining set
is used to separate molecules into classes of activity, thereby
predicting the activity of this molecule and evaluating the
quality of the decision rule. The last step includes application
of the pruning methods [38, 39] that aim in a set of the most
relevant ETMC fragments selection.

These algorithms operate in a manner similar to step-wise
multiple regression analysis and exclude at each step one
input parameter that was estimated to be non-significant. The
pruning algorithms were used in the current study to deter-
mine significant parameters of input data points of the ana-
lyzed molecules as described in references [38, 39].

To reflect the realistic internal structure of the data, all
compounds were separated into two main classes, as it was
said before. The first one included 27 active compounds, and
the second series included 26 ‘inactive’ compounds. For the
data, 249 fragments were selected. The first step consisted of
using the LOO cross-validation procedure for the total set of
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compounds. The ASNNs recognized correctly 92%, or 49
from 53 compounds. Next, the importance of the detected
fragments for the observed activity was evaluated by using
pruning methods. The most part of the fragments (taken as
descriptors) were detected as non-significant and removed by
the pruning algorithms. As the result, only 13 ETMC-
fragments were chosen as the most important ones from 249
fragments in total. By this, ASNN classified correctly 94%,
or 50 compounds from 53.

In Fig. (6), for template compounds 1 and 52 those mo-
lecular sides are shown where generalized ETSCs (one
pharmacophore and one anti-pharmacophore) are realized.
As seen from the figure, the atoms that enter the fragments
found by means of ETM and ETM-NN are practically same.

8,00

7.00

6,00

5,00

4,00 1o D

Theoretical Neural Network leave-one-
out cross validationlog 1/1Cs, results

3,00 T T T T
3,00 400 5,00 6,00 7.00 8,00
Expetimental log 1/1Cs,

Fig. (6). Neural network leave-one-out cross-validation log 1/ICs
results.

The main goal of the second stage in the data analysis
was to evaluate an efficacy of ASNN in the SAR model gen-
eration for the real values of the activity. The first step was
the LOO cross-validation procedure applied to the total set of
compounds. It has been found that a cross-validated ¢° coef-
ficient of the ASNN predictions was 0.72+0.01. After apply-
ing the pruning methods but 9 fragments were selected from
249 in total, the cross-validated ¢° value was found as
0.88+0.01.

Thus, the obtained results indicate that application of
pruning methods provides higher prognosing ability com-
pared to the case when all descriptors are used for the activi-
ties prediction. As it is seen, the approach presented in this
study has shown quite satisfactory results (Fig. (7)).

This fact tells in favor of workability of the both models
found. These models can be applied to the design of new
potent AChE inhibitory activity drugs.

CONCLUSION

A series of 3-[2-(1-Benzylpiperidin-4-yl) ethylamino]
pyridazine anti-cholinesterase activity is studied by means of
the ETM, which takes into account both structural and elec-
tronic characteristics of molecules. Based on pharmacopho-
res and anti-pharmacophores calculated by the ETM-
software as sub-matrices containing important spatial and
quantum chemistry characteristics, a system for the activity
prognostication is developed. The system was tested on a
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Compound 1.

Compound 52.

Saracoglu and Kandemirli

Fig. (7). Molecular fragments responsible for the AChE inhibitory activity’s presence (compound 1) and ‘break of activity’ (compound 52) found from the

ETM-ASNN approach.

few molecules with molecular skeletons others than those
that were characteristic of the training sets. It allows for
identifying the presence/absence of the anti-cholinesterase
activity (with probability of 93%) in molecules with diverse
structures and predicting the level of the activity as well.

The initial data analysis witnesses the intimate relation of
the activity exhibited by molecules to their spatial and elec-
tronic states. Any changes in the values of the matrices that
excel the limits allowed cause diminishing or complete loss
of the activity. The system for the anti-cholinesterase activity
prediction is supposed to be used for the synthesis of new
potent drugs. It makes screening and design of new potential
drugs easy and effective.
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